

1. A block of mass m, acted on by a force F directed horizontally, slides up an inclined plane that makes an angle θ with the horizontal. The coefficient of sliding friction between the block and the plane is μ.
a. On the diagram of the block below, draw and label all the forces that act on the block as it slides up the plane.

b. Develop an expression in terms of m, θ, μ, F, and g for the block's acceleration up the incline.
c. Develop an expression for the magnitude of the force F that will allow the block to slide up the plane with a constant velocity. What relation must θ and μ satisfy in order for the solution to be physically meaningful?

2. A horizontal force F is applied to a small block of mass m_{1} to make it slide along the top of a larger block of mass m_{2} and length L. The coefficient of kinetic friction between the blocks is μ. The larger block slides without friction along a horizontal surface. The blocks start from rest with the smaller block at one end of the larger block.
a. On the diagram below draw and label all the forces acting on each block.

b. Find the acceleration of each block: a_{1} and a_{2}, relative to the horizontal surface.
c. In terms of L, a_{1}, and a_{2} find the time t needed for the small block to slide off the end of the larger block.
d. Find the expression for the energy dissipated as heat because of the friction between the blocks.

3. A 500 kg box rests on a platform of the electrical fork-lift. Starting from rest at time $\mathrm{t}=0$, the box is lowered with a downward acceleration of $1.4 \mathrm{~m} / \mathrm{s}^{2}$.
a. Determine the upward force exerted by the horizontal platform on the box as it is lowered.

At time $\mathrm{t}=0$, the fork-lift also begins to move forward with an acceleration of $1.9 \mathrm{~m} / \mathrm{s}^{2}$ while lowering the box. The box doesn't slip or tip over.
b. Determine the friction force on the box.
c. If the box doesn't slip, determine the minimum coefficient of static friction between the box and the platform.
d. Determine the expression that describes the path of the box (y as a function of x), assuming, at time $\mathrm{t}=0$ the box has a horizontal position $\mathrm{x}_{0}=0$ and a vertical position $\mathrm{y}=2.5 \mathrm{~m}$ above the ground, with zero velocity.
e. On the coordinate system below sketch the path taken by the box.

