BULLSEYE Lab

Name: ________________________________

Date: ________________________________

Pre-AP Physics Lab

PROJECTILE MOTION

Weight = 1

DIRECTIONS: Follow the instructions below, build the ramp, take your measurements, and use your measurements to make the calculations following.

1. (10 points) Using the materials in the back (insulation foam, siding, cardboard, pvc pipe, tape, books, marbles, bullseye sign), build a ramp like the one shown at right. The most important building aspect is that the ball roll off the table horizontally after coming down an incline of some sort (it shouldn’t arc upwards into the air or face downwards as it rolls off).

2. Select a distance away from the table & tape down your bullseye target. The center of the bullseye must be at least 50 cm away from the place where the ball rolls off the table.

3. Adjust the height of your ramp (or the location of the bullseye) until you are able to roll the steel ball down and make a bulls eye (the small center circle not just any part of the target) at least twice in a row. Call the teacher, show him/her that your set up can hit the bullseye twice in a row, and have him/her initial here when you do it.

____________________ INITIALS (five points)

4. (one point) Measure the distance x, the ball rolls down the ramp (see Figure at right). Put your measurement in the table below in the correct blank (answer in meters). EX: 0.45 m

5. (one point) Measure the time t to roll down the ramp (through the distance x). Put your measurement for time in the table below (answer in seconds). EX: t = 0.25 sec

6. Calculate the acceleration a of the ball as it goes down the ramp by doing the following steps.

 a. (one point) Determine which of the following motion formulas from Unit 2 will allow us to find the acceleration of the marble down the ramp if we know the distance travelled x, by the marble, and the time elapsed t. Put an X in the right box.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>v = d/t</td>
<td>d = ½(v₀ + v_f)t</td>
<td>a = v/t</td>
</tr>
<tr>
<td>velocity = distance + time</td>
<td>distance = ½·(initial velocity + final velocity)·time</td>
<td>acceleration = velocity + time</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>□</td>
<td></td>
</tr>
<tr>
<td>v_f = v_o + a·t</td>
<td>v_f² = v_o² + 2·a·d</td>
<td></td>
</tr>
<tr>
<td>final velocity = initial velocity + acceleration·time</td>
<td>(final velocity)² = (initial velocity)² + 2·acceleration·distance</td>
<td></td>
</tr>
</tbody>
</table>

 □ d = v_o·t + ½·a·t² | distance = initial velocity·time + ½·acceleration·time²
 | This is the only formula that has distance, time, t, and acceleration, a |

 b. ________ (one point) What is the initial velocity v_o of the marble as it just begins its trip down the ramp a distance x? The ball is not moving at all at the beginning.
c. Based on your answer to Step b., how does the motion formula you picked in Step a simplify? The formula \(d = v_o \cdot t + \frac{1}{2} \cdot a \cdot t^2 \) becomes \(d = \frac{1}{2} \cdot a \cdot t^2 \) because the \(v_o \) term drops out since \(v_o \) is zero and anything times zero is zero.

Write the simplified formula here: \(d = \frac{1}{2} a t^2 \) (one point).

d. Now solve the motion formula from Step c. for the acceleration, \(a \). In other words, leave \(a \) by itself and get everything else on the other side of the equal sign. \(d = \frac{1}{2} \cdot a \cdot t^2 \rightarrow 2 \cdot d = \frac{1}{2} \cdot a \cdot t^2 \cdot 2 \rightarrow 2 \cdot d = a \cdot t^2 \rightarrow \frac{2 \cdot d}{t^2} = a \)

Write your formula for \(a \) here. \(a = \frac{2 \cdot d}{t^2} \) (one point)

e. (one point) Find the acceleration \(a \) of the marble as it moves down the ramp using the data you obtained for distance, \(x_f \), and time, \(t \), in Steps 4 and 5 above. Record your value for acceleration in the table below. Show your work here. Acceleration is measured in m/s\(^2\).

\[a = \frac{2 \cdot d}{t^2} \Rightarrow \frac{2 \cdot (0.45 \text{ m})}{(0.25 \text{ s})^2} = 14.4 \text{ m/s}^2 \]

7. (one point) Now look at the motion formula table below. Determine which of the following motion formulas from Unit 2 will allow us to find the final velocity of the marble as it comes down the ramp and onto the table if we know the initial velocity of the marble \(v_o \), the acceleration of the marble \(a \), and the time elapsed \(t \). Put an \(\square \) in the right box.

<table>
<thead>
<tr>
<th>(v = \frac{d}{t}) velocity = distance / time</th>
<th>(d = \frac{1}{2}(v_o + v_f)\cdot t) distance = (\frac{1}{2} \cdot (\text{initial velocity} + \text{final velocity}) \cdot \text{time})</th>
<th>(a = \frac{v}{t}) acceleration = velocity / time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\square)</td>
<td>(v_f = v_o + a \cdot t) final velocity = initial velocity + acceleration \cdot time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The only formula that has (v_o), the initial velocity, (a), the acceleration, and (t), the time</td>
<td></td>
</tr>
</tbody>
</table>

8. (one point) Using the motion formula you selected in Step 7, find the final velocity \(v_{xf} \) of the marble as it leaves the ramp and makes its way across the horizontal table surface. Show your work here and record your answer in the correct blank in the answer table below.

\(v_f = v_o + a \cdot t = 0 + 14.4 \text{ m/s}^2 \cdot (0.25 \text{ s}) = 3.6 \text{ m/s} \)

DIRECTIONS: Fill in the missing blanks here:

a. (one point) Notice we are calling the final velocity \(v_{xf} \) and not just \(v_f \) because we are indicating the marble’s velocity when it leaves the ramp is horizontal and not \(\text{vertical} \). ____

b. (two points) Also, since the table is horizontal, the velocity at which the marble leaves the ramp is the same as the velocity the marble moves at when it falls of the \(\text{table} \). The marble has a \(\text{constant} \) velocity on the table, meaning it does not accelerate. ____

9. (one point) Now in the table below record (in meters) in the correct blank how far the bullseye is horizontally from the base of your table, \(x \) (see Figure at right on p. 1). Remember that the horizontal distance had to be at least 0.50 m away from the table. \(\text{EX: 1.5 m} \)
DIRECTIONS: Fill in the missing blanks here:

a. (four points) After the marble flies off the __table__ horizontally, it will experience two kinds of motion. It will continue to move __horizontally__ as it was before but it will now also start to __move/fall__ vertically due to the pull of the force of __gravity__ on it.

b. (three points) But as we saw in the Falling Monkey Firestarter/video and the Firestarter/Mythbusters video about shooting a __bullet__ out of a gun at the same time as you dropped the bullet next to the gun, horizontal movement is independent of __vertical__ movement. Gravity doesn’t __affect/impact__ horizontal movement.

10. (one point) Now look at the motion formula table below. Determine which of the following motion formulas from Unit 2 will allow us to find the time t it takes the marble to fly horizontally from the table through a horizontal distance x to hit the bullseye if it is moving at a horizontal velocity of v_{xf}. Remember: the acceleration due to gravity does NOT affect horizontal motion. Put an 𝕫 in the right box.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$v = \frac{d}{t}$</td>
<td>velocity = distance d divided by time t. This is the formula for constant velocity problems where there is no acceleration.</td>
</tr>
<tr>
<td>$d = \frac{1}{2}(v_0 + v_f)t$</td>
<td>distance d equals half of the initial velocity v_0 plus the final velocity v_f times the time t.</td>
</tr>
<tr>
<td>$a = \frac{v}{t}$</td>
<td>acceleration a equals velocity v divided by time t.</td>
</tr>
<tr>
<td>$v_f = v_0 + a\cdot t$</td>
<td>final velocity v_f equals initial velocity v_0 plus acceleration a times time t.</td>
</tr>
<tr>
<td>$v_f^2 = v_0^2 + 2\cdot a\cdot d$</td>
<td>(final velocity) squared equals (initial velocity) squared plus twice the acceleration times distance d.</td>
</tr>
<tr>
<td>$d = v_0\cdot t + \frac{1}{2}\cdot a\cdot t^2$</td>
<td>distance d equals initial velocity v_0 times time t plus half of the acceleration times time t squared.</td>
</tr>
</tbody>
</table>

11. (one point) Solve for time t in the formula you selected in Step 10. and find the time it took the marble to hit the bullseye. Record your answer in the correct blank in the table below. Show your work here.

\[v = \frac{d}{t} \Rightarrow t = \frac{d}{v} = \frac{1.5\ m}{3.6\ m/s} = 0.42\ s \Rightarrow 1.50\ m \text{ was the horizontal distance from the table to the bullseye and } 3.6\ m/s \text{ was } v_{xf}, \text{ the horizontal velocity of the marble.} \]

12. Now let’s verify if our time t that we found in Step 11. is reasonable by doing the following steps.

a. (one point) Measure the height y_0 of the table off the ground (See Figure at right on p. 1) in meters. Record your answer in the correct blank in the table below. EX: $0.9\ m$

DIRECTIONS: Fill in the missing blanks here:

a. (one point) The time for the marble to move horizontally from the table to the target is the same time for the marble to __fall__ down to the ground as gravity pulls it down.

b. (three points) Gravity pulls things down to the ground at a rate of negative __10__ meters per second per second. Gravity is very predictable. So if we did our math right, we should be able to find out how __far__ (in m) the marble fell in the time
we found in Step. 11 when pulled down by gravity. This distance fallen by the marble should match up pretty closely with the _height_ of the table that we measured in Step. 12.a.

c. (one point) Look again at the motion formula table below. Determine which of the following motion formulas from Unit 2 will allow us to find the distance \(d \) the marble falls from the table after \(t \) seconds have passed if the marble has an initial velocity of \(v_o \) and is being accelerated due to gravity. Put an \(\times \) in the right box.

v = \(\frac{d}{t} \)	d = \(\frac{1}{2}(v_0 + v_f)t \)	a = \(\frac{v}{t} \)
velocity = distance ÷ time	distance = \(\frac{1}{2} \cdot (\text{initial velocity} + \text{final velocity}) \cdot \text{time} \)	acceleration = velocity ÷ time
\(v_f = v_0 + a \cdot t \)	\(v_f^2 = v_0^2 + 2 \cdot a \cdot d \)	This is the only formula with distance \(d \), time \(t \), and acceleration, \(a \),
final velocity = initial velocity + acceleration \(\times \) time	(final velocity)^2 = (initial velocity)^2 + 2 \cdot \text{acceleration} \cdot \text{distance}	

This is the only formula with distance \(d \), time \(t \), and acceleration, \(a \).

d. Wait a second! Let’s think about the vertical velocity of the marble as it leaves the table. DIRECTIONS: Fill in the missing blanks here: (one point) Since the marble flew off the table horizontally, it’s initial vertical velocity is _zero_. Gravity still hasn’t had time to act upon it.

e. (one point) So our formula from Step. c. simplifies. Write down your simplified formula here: \(d = \frac{1}{2} \cdot a \cdot t^2 \)

NOTE: this formula is a LOT like the formula in Step 6.c. above.

f. (one point) The vertical acceleration is due to gravity which has a value of _-10_ meters per second per second.

g. (one point) Plug in your value for \(a \) from Step f. above and the time \(t \) you found in Step 11 into your formula and solve for the distance fallen, \(y_o \). Put your answer here: \(d = \frac{1}{2} \cdot (10 \text{ m/s}^2) \cdot (0.42)^2 = 0.87 \text{ m} \) ____________.

h. (one point) Is the answer for Step g. above reasonably close to the answer you got for \(y_o \) from Step 12.a.? \(\text{YES} \) \(\times \) \(\text{NO} \)

0.9 m (our measured table height) is reasonably close to 0.87 m (our calculated falling distance/table height)

13. Now let’s find the final vertical velocity \(v_y \) of the marble right before it hits the ground. This is one of your mental math tricks. DIRECTIONS: Fill in the missing blanks here:

(two points) It took the marble __0.42 s__ (Ans. to Step. 11) seconds to fall to the ground. If gravity increases the velocity of a falling object by \(-10\) meters per second per second, then the final vertical velocity \(v_y \) of the marble is __4.2_ m/s . Put your answer in the correct blank in the table below. This is the mental math thing we practiced. Gravity (10 m/s/s), \(g \), times the time, \(t \) = vertical velocity

14. Final step. We said earlier that the marble is moving horizontally \(v_x \) and falling \(v_y \) at the same time once it leaves the table.
15. Right before it lands, it is moving diagonally at a velocity of \(v_f \) meters per second as shown in the illustration at right:

a. (three points) DIRECTIONS: Fill in the missing blanks here. To find the final diagonal velocity \(v_f \) of the marble right before it hits the ground we have to recognize the geometric shape of a right ______ above formed by the three velocities put together. This lets us use the ______ Theorem to find the value of \(v_f \), the final diagonal velocity, which is the ______ of the triangle. \(v_{xf} \) is the adjacent side of the triangle and \(v_y \) is the opposite side.

b. (one point) Find the final velocity \(v_f \), of the marble from Step 15.a. and put the answer in the correct blank in the table below.

<table>
<thead>
<tr>
<th>Length of ramp, (x_r) (in m)</th>
<th>Height of table, (y_f) (in m)</th>
<th>Horizontal distance, (x), from table to target (in m), where the marble falls</th>
<th>Time, (t_r) (in s) to roll down the ramp to edge of table</th>
<th>Time, (t_f) (in s) marble is in the air after rolling off the table</th>
<th>Acceleration, (a), of marble down the ramp (in m/s^2)</th>
<th>Horizontal velocity, (v_{xf}), of the marble (in m/s) when it flies off the table</th>
<th>Final vertical velocity, (v_y), of the marble (in m/s) when it lands</th>
<th>Final diagonal velocity, (v_f), of the marble (in m/s) when it lands.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.45 m</td>
<td>0.9 m</td>
<td>1.5 m</td>
<td>0.25 sec</td>
<td>0.42 s</td>
<td>14.4 m/s^2</td>
<td>3.6 m/s</td>
<td>4.2 m/s</td>
<td>5.5 m/s</td>
</tr>
</tbody>
</table>

Final diagonal velocity from Pythagorean Theorem: \(c^2 = a^2 + b^2 \)

\[
v_f^2 = v_y^2 + v_{xf}^2 \quad \Rightarrow \quad v_f = \sqrt{v_y^2 + v_{xf}^2} = \sqrt{(4.2 \text{ m/s})^2 + (3.6 \text{ m/s})^2}
\]

\[
v_f = \sqrt{17.36 + 12.96} = \sqrt{30.32} = 5.5 \text{ m/s}
\]

Final diagonal velocity from Pythagorean Theorem: \(c^2 = a^2 + b^2 \)

\[
v_f^2 = v_y^2 + v_{xf}^2 \quad \Rightarrow \quad v_f = \sqrt{v_y^2 + v_{xf}^2} = \sqrt{(4.2 \text{ m/s})^2 + (3.6 \text{ m/s})^2}
\]

\[
v_f = \sqrt{17.36 + 12.96} = \sqrt{30.32} = 5.5 \text{ m/s}
\]